397 research outputs found

    Performance assessment of optical packet switching system with burst-mode receivers for intra-data centre networks

    Get PDF
    We investigate the performance of a burst-mode receiver in an optical packet switching system. Experimental results indicate that a preamble of 25.6ns allows error-free operation of 10Gb/s asynchronous switched packets with 8dB dynamic range and 25ns minimum guard-time

    Simultaneous optical carrier and radio frequency re-modulation in radio-over-fiber systems employing reflective SOA modulators

    Get PDF
    We demonstrate an innovative full-duplex radio-over-fibre transmission system employing a reflective SOA to perform simultaneous reusing of the optical carrier and data remodulation, thus avoiding the use of local radiofrequency oscillator at the station sites

    In-band label extractor based on Cascaded Si ring resonators enabling 160 Gb/s optical packet switching modules

    Get PDF
    Photonic integration of optical packet switching modules is crucial to compete with existing electronic switching fabrics in large data center networks. The approach of coding the forwarding packet information in an in-band label enables a spectral-efficient and scalable way of building low-latency large port count modular optical packet switching architecture. We demonstrate the error-free operation of the four in-band label extraction from 160 Gb/s optical data packets based on photonic integrated silicon-on- insulator ring resonators. Four low-loss cascaded ring resonators using the quasi-TM mode are used as narrowband filters to ensure the detection of four optical labels as well as the error-free forwarding of the payload at limited power penalty. Due to the low-loss and less-confined optical quasi-TM mode the resonators can be very narrowband and have low insertion loss. The effect of the bandwidth of the four ring resonators on the quality of the payload is investigated. We show that using four rings with 3dB bandwidth of 21 pm and only an insertion loss of 3 dB, the distortion on the payload is limited (< 1.5 dB power penalty), even when the resonances are placed very close to the packet's central wavelength. We also investigate the optical power requirements for error-free detection of the label as function of their spectral position relative to the center of the payload. The successful in-band positioning of the labels makes this component very scalable in amount of labels

    Photonic subsystems for optical packet/burst switches based on heterogeneous SOI and III-V integration

    Get PDF
    In this paper we describe how high-quality silicon photonic ICs and III-V membrane switches integrated on this platfottit can be used to build photonic subsystems for optical packet switches

    SDN-controlled and Orchestrated OPSquare DCN Enabling Automatic Network Slicing with Differentiated QoS Provisioning

    Get PDF
    In this work, we propose and experimentally assess the automatic and flexible NSs configurations of optical OPSquare DCN controlled and orchestrated by an extended SDN control plane for multi-tenant applications with differentiated QoS provisioning. Optical Flow Control (OFC) protocol has been developed to prevent packet losses at switch sides caused by packet contentions.Based on the collected resource topology of data plane, the optical network slices can be dynamically provisioned and automatically reconfigured by the SDN control plane. Meanwhile, experimental results validate that the priority assignment of application flows supplies dynamic QoS performance to various slices running applications with specific requirements in terms of packet loss and transmission latency. In addition, the capability of exposing traffic statistics information of data plane to SDN control plane enables the implementation of load balancing algorithms further improving the network performance with high QoS. No packet loss and less than 4.8 us server-to-server latency can be guaranteed for the sliced network with highest priority at a load of 0.5

    Testing facilities for end-to-end test of vertical applications enabled by 5G networks:Eindhoven 5G Brainport Testbed

    Get PDF
    The key-performance indicators (KPIs) that will be delivered by 5G networks such as extremely low-latency, high capacity, robustness and highly flexible network are key enablers for applications such as autonomous driving, cooperative robotics, transport and processing of large volumes of video and images, to name but a few. This paper presents the ongoing build up and deployment of the Eindhoven based 5G-Brainport testbed towards an open environment for validation and test of end-to-end applications benefitting from the 5G KPIs
    • …
    corecore